In mathematics, a **Dupin cyclide** or **cyclide of Dupin** is any geometric inversion of any standard torus. In particular, the standard (or circular) tori are themselves examples of Dupin cyclides. They were discovered by (and named after) Charles Dupin in his 1803 dissertation under Gaspard Monge. The key property of a Dupin cyclide is that it is a channel surface (envelope of a one parameter family of spheres) in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

Dupin cyclides are often simply known as "cyclides", but the latter term is also used to refer to a more general class of quartic surfaces which are important in the theory of separation of variables for the Laplace equation in three dimensions.

Read more about Dupin Cyclide: Definitions and Properties, Cyclides and Separation of Variables